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Representations of SO(p + q) and O(p) with 
Application to the Shapes of S,9Li 
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a n  

It is easy to show that the symmetry groups governing a system of Z protons 
and N neutrons are SO(p + q) and O(p), where p, q are related to Z, N and the 
symmetry groups are transitive on a Grassmann manifold Gn,q: In this paper the 
general representations of SO(p + q) and O(p) are found and used to describe 
the geodesics on Gn, q for the nuclear manifolds of the neutron rich-elements 
8,9Li" 

1. INTR(~DUCTION 

Some time ago de Wet (1987) showed that SO(p + q) is the correct 
symmetry group for the odd-A nuclei, while O(p) governs the even nuclei. 
Here 

p = q = �89 + 1)(N + 1) if Z or N or both are odd 
(1.1) 

= (q + 1) = �89 + 1)(N + 1) + 1] if both Z, N are even > 2 

A matrix representation (1.11) of SO(p + q) may be written in the super- 
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( 1.2) 

and the group rotates a p-dimensional plane (labeled by the spin state [20]). 
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1842 de Wet 

Since there may be more than one angle between two p planes (Wong, 1967), 
this means that there may be more than one angular momentum series. 

The rows (columns) of  (1.2) are labeled by a partition 

A = 2 1 + 2 2 "~ 2 3 -[- 2 4 ( 1 . 3 )  

of  A such that (2~ + 22), (22 + 23), (22 + 24) remain constant. Physically 
(21 + 22), (23 -/- 24) are respectively the numbers N, Z; while (22 + 23) is the 
number of  nucleons with a given spin and (22 + 24) that number with a given 
parity. Thus the possible states associated with a given state [2~ 2223 24] - [2] 
are 

{NOOZ; NOI(Z - 1 ) ; . . .  ; NOZO}; 

{ ( N -  1)10Z; ( N -  1 ) l l (Z  - 1) . . . .  ; ( N -  1) 1Z0}; 

. . .{0NOZ; 0NI (Z  - 1 ) ; . . .  ; 0NZ0} (1.4) 

These include all the possible spin values of  the multiplets j~ = N/2, 
J2 = Z/2 with the principal state [2] in the middle row. An example for 8Li, 
8B is provided by Table I. 

There are in fact many principal states 

Cp(m = ~ Ctxlpt;. 1 (1.5) 
2 

associated with all the possible configurations of  A nucleons (de Wet, 

Table I. Coherent States of 8Li, SB 

8Li 8B SLi 8B 

C[32o3] 
"~1 ~2 ~3 "~4 ~2~1 ~4/~3 ~3"~4~1 "~2 ~4/~3 ~2~1 7tO 80 7t0 80 = C[3023] 

S +  - - + 
5003 0530 0350 3005 - 2 i  8i 2i 8i 60 
5012 0521 1250 2105 - 4 i  6i 4i 6i 20 
5021 0512 2150 1205 - 6 i  4i 6i 4i - 2 0  
5030 0503 3050 0305 - 8 i  2i 8i 2i - 6 0  

4103 1430 0341 3014 0 6i 0 6i 36 
4112 1421 1241 2114 - 2 i  4i 2i 4i 12 
4121 1412 2141 1214 - 4 i  2i 4i 2i - 12 
4130 1403 3041 0314 --6i  0 6i 0 - -36 

A3203 2330 0332 3023A 2i 4i --2i  4i 12 
3212 2321 1232 2123 0 2i 0 2i 4 
3221 2312 2132 1223 --2i  0 2i 0 - -4  
3230 2303 3032 0323 --4i  --2i  4i - 2 i  --12 
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1971). Here Cta I is an invariant operator and Pt~l is a projection operator 
consisting of  all four possible charge spin states. It satisfies 

e~al = Ptal~ b (1.6) 

so Pt~l A b is idempotent, but since the parameter ~ is irrelevant, Ptx~ is a 
pure or coherent state in the density matrix formulation of  quantum 
mechanics (Biedenharn and Louck, 1981) with the eigenvalues 0, r which 
implies that only one state [2] can exist at a particular time. 

Essentially the analysis consists in finding the tensor products in the 
enveloping algebra A(~) of the Dirac ring of  a self-representation 

�88 = (iE4~kl + E231]/2 + E14~3 + Eos~k4)e (1.7) 

with itself (de Wet, 1971). Here Eddington's E-numbers are related to the 
4 x 4 Dirac matrices by 

?v = iEo~, Euv = Eo~,Eov, E~v = - -  1, E~,~ = - -  E,~,, # < v = 1 , . . . ,  5 

and the commuting operators E23, E14, and Eos are, respectively, infinitesi- 
mal rotations in 3-space, 4-space, and isospace that correspond to the spin 
tr, parity n, and charge T3 carried by a single nucleon. The parameters 
~b2, g'3, g'4 are half-angles of  rotation and e is a primitive idempotent; E4 is 
a unit matrix�9 

A rotation through 180 ~ about  x will change spin up to spin down and 
if this is followed by a rotation of  180 ~ about t, then x can go to - x  
without inverting time but causing a space inversion, i.e., a left-handed 
coordinate system or parity reversal (El4 ~ - E l 4  ). 

The basis elements of A(2) are the 4 A x 4 A matrices 

e t v  = E4 ~ " . . @ E4 @ Egv (~  E4 (~ . . . (~  E 4 ( 1 . 8 a )  

]~l+ 1 with Eu. in the lth position. The elements Et.~, -j,v commute and A(7) is 
found to have the following generators: 

1 1 F(fl ) = ~(Eo~ + E~v + + A �9 "" Eo~), v = 1 , . . . , 5  (1.8b) 

7,(tl) [I'~(A), F(vA)] ' 1 2 "" + EAr) ( 1 . 8 C )  u~ = = ~(Eu~ + E . ~  +" 

n~A)=Eo~| �9 |  2 .  �9 " - Eo~ Eo~ �9 �9 E ~  ( 1 . 8 d )  

uv = Eu~Es,~ �9 �9 E.~, # < v = 1 . . . . .  5 (1.8e) 

These algebras were called de Broglie algebras by Boerner (1963) and the 
Kemmer algebra corresponds to the particular case A = 2 (Kemmer, 1943). 
Then 

ia  u _ [1A,I,21,1,~.2,1,23,1,24 ~(A),lt),l~l,,22,1,23d,24 
z [ 2 ] - -  t-~ ~t~l W2 tV3 ~'t4 "{-tl23 W 2 W 1 W 4 W 3  

..~ ~(A) tlt)LI ] ~'2,1,'~'3tIs'~4 ..1_ ,(A),lsXlaK a2,1,,23~b 24~r ( 1 . 9 )  
q 1 4 ' f ' 3 " ~ 4 W l  W2 T t / 5  W 4 W 3 W 2 W I I C . A  



1844 de Wet 

where EA = e | 1 7 4  = ele 2 . . .  e A is a primitive idempotent in A(T) and 

Equation (1.9) is a generalization in many-particle space of the funda- 
mental representation (1.7) and by examination we may confirm the 
canonical labeling introduced above. The first two terms are characterized 
by the same values of Z, N but opposite spins because (22 + 23) is replaced 
by (2, + 24). In the third and fourth terms (23 + 24) has replaced (2, + 22), 
so charge has been reversed, but again there are two possible spin states in 
the mirror nucleus. These changes lead automatically to a parity reversal in 
the first and second pairs and it may easily be shown that the choice of 
(22 + 23) as the number of nucleons with a negative spin is in agreement 
with the labeling of the rows of the outer product ~ , r n l ) |  of a 
system of protons and neutrons described by (1.4). 

However, many configurations in the tensor product are the same up 
to a combination that includes every possible exchange of spin, parity, and 
charge between nucleons such that the net quantum numbers remain the 
same for that state [2]. This is equivalent to constructing the quotient space 
M = P / H ,  where P is the 4a-dimensional configuration space, with coordi- 
nates x i  carrying A(T) and H is the permutation group. Thus, if 

N[~] = A !/2, !22 !23 !24! (1.10) 

is the number of combinations of the state [2], we may regard the Nt~ J phase 
changes as a fiber over the point ~i in M so that the model is invariant 
under phase transformations. 

Then by choosing 4 x 4 matrix representations for E23, El4, Eo5 and 
constructing the fibers it may be shown (de Wet, 1973, 1987) that the base 
space M decomposes beautifully into subspaces constituting an isobaric 
multiplet, and moreover that the spin angular momentum matrices in a 
given member of the multiplet are just those of Biedenharn and Louck 
(1981) for a coupled system of protons and neutrons, namely 

a i = E N | 1 7 4  i =  1,2,3 (1.11a) 

where el"i and UFi are (P + 1)- and (N + 1)-dimensional Lie operators of 
SO(3); Ej, and EN are (P + 1) and (N + 1) unit matrices; and a; - aj~.~ ) of 
(1.8c), so that the spins of the A nucleons are indeed additive. 

Similarly the infinitesimal rotations in 4-space are 

Igi -~- ~" I4"~(A) = EN | PF, -- NFi | E P (1.1 Ib) 

and tri and ~ are the infinitesimal operators of the 4-dimensional rotation 
group 04 D S O ( p  + q),  so we have found a supermultiplet augmented by 
the invariant operator 

~.~2+1. ~2+a~-~2+~3+, . .Egs-~0 (1.12) Cta J = i a ' C ( E ~3  " " " E ~  ~ , 4  " ~ l g  "-'o5 " 
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where C denotes summation over the Nt~ t combinations of the basis 
dements contained in the bracket. Special cases are 

C [ ( a  _ m o o ]  = 2 ~  - ' ( r  I , C [ (A  - , )o lo]  = 2/a - ' n l ,  C t ( A  - ] )ool }  = 2 i  A - I r m a )  

(1.13) 

and by rearranging rows and columns we can rewrite O ' 1 ,  ~rg I in the form 
(1.2) if A is odd. 

However, it is also possible to choose a CP-invariant operator CtA ] 
from among the principal operators Ct~ l of (1.5), and following the work of 
Arnold (1989), the nuclear dynamics is considered to be governed by C[A], 
which is an exchange operator and a bilinear form, or measure, on the 
nuclear manifold M. This complements the ideas of Gilmore and Draayer 
(1985) and Barut and Raczka (1977), who also replaced the Hamiltonian 
by an invariant operator. Thus the theory of nuclear structure reduces to 
the purely mathematical problem of studying the associated hyperspherical 
functions in the middle column of exp(CtA10), which are at the same time 
representations of SO(p + q) or O(p). Actually Ct^ } is reducible, but if A is 
odd one can find an irreducible subspace/~ of SO(p + q) containing the 
fundamental state [A] so that the irreducible representations of SO(p + q) 
are provided by exponentiation of (#(9) and come from a horizontal 
subspace m of the tangent space to Gp.q. But if A is even, then # is a 
subspace of O(p) which belongs to the vertical subspace h of the tangent 
space. 

In the next section a general solution will be given to the problem of 
exponentiating the infinitesimal operators o(P) and so(p +~ q), which have 
real and complex eigenvalues, respectively. Thus there are two classes: (1) 
real eigenvalues, #eh,  A even; (2) imaginary eigenvalues, #Era, A odd. 
Then in the final section the theorem will be used to find the structure of 
the neutron-rich nuclei 8'9Li, which have recently been studied (Blank et aL, 
1991). 

2. IRREDUCIBLE REPRESENTATIONS OF SO(/) + q), O(p) 

As stated at the end of the last section, we will be concerned with two 
cases according to whether the irredudble subspace # belongs to the 
vertical or horizontal subspaces of the canonical decomposition g = h + m 
of the Lie algebras o(p) and so(p + q). Beginning with class l,/~ symmet- 
ric~h, we can always reduce the eigenvalues to the positive canonical form 
0, 1, 2 2 " "  2~ by subtracting a constant 2, to translate the spectrum and 
then dividing by a factor 2f so that one eigenvalue of the translated 
spectrum has the value unity. This follows because if AX = 2X, then 

(A - k,)x = - x,)x 
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It will be shown in Section 3 that exponentiation of the translated or 
canonical spectrum leads to a factor ei~, o that is responsible for vibrational 
modes, while 2f may be absorbed in 0 and does not change the shape of the 
geodesics although there is a frequency change. Once in possession of the 
canonical spectrum it is always possible to use the characteristic equation 

#(/t -- 1)(# -- 22) " " " (P -- 2,) = 0 (2.1a) 

to express #n+m in terms of #, /t 2, . . . , /~n  and thus to write 

e~ 1 + ~ ~J~j(O) Jr i ~ /flSy(O) (2.1b) 
j = 1,2 .... j = 1,2,.., 

where Zj (0) is a series in even powers of 0 with alternating sign, while Sj (0) 
is a series in odd powers of 0. 

I f  #, skew-symmetric era, is a class 2 matrix, then the eigenvalues are 
imaginary and the characteristic equation is 

#~2 + 1)~2 + 222)... (/~2 + 22) = 0 (2.2a) 

and 
2n 2 n -  1 

eU~ 1 + ~ #JY.j(0) + ~ pJSj(O) (2.2b) 
j = 2,4,6 .... j = 1,3,5 .... 

Before stating the central theorem of  this contribution, we note that 
the sum of  the coefficients of the characteristic equations (2.1a), (2.2a) is 
zero. This follows trivially by setting/t  = 1 in (2.1a), a n d / t  = i in (2.2a), 
and ensures that the exponential series have rotational properties. To see 
this we will prove two lemmas. 

Lemma 1. If  the characteristic equation (2.2a) is written 

/ ~ 2 n +  ! = _ _ C 2 n _ l ~ 2 n - l  f 2 n _ 3 ~ 2 n - 3  . . . . .  Cl  ~ (2.2c) 

where 

C2n - 1 --  C2n -- 3 "~ C2n - 5 . . . .  J r  C1 -- 1 (2.2d) 

then the sum of the coefficients of the characteristic equation 

f 1 2 n + 3  = __C2n - l ~ 2 n +  1 __ C2n_ 3] .12n- -1  - -  C 2 n _ 5 ~ 2 n - 3  . . . . .  G i f t 3  

= C2n_ 1 ( C 2 n _  l ~ 2 n - -  1 .3t_ C 2 n _  3 / ~ 2 n - -  3 .31_. . . .31_ C l f l )  

__ C2n_ 3]~2n-1 . . . . .  Cl  U3 (2.2e) 

with alternating signs, will also be unity. 

This follows directly from (2.2d) and by induction the lemma will be 
true for all odd powers of/z.  It will also be true for even powers where 
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(2.2c) is replaced by 

# 2 n  + 2 = __ .C2  n _ 1 #2 .n  _ C 2  n _ 3 # 2 n  - 2 . . . .  C I  # 2  (2.20 

and for all the powers of # derived from successive substitution of the class 
1 characteristic equation (2.1a). We will call the coefficients of (2.2e) and 
its successors daughters of (2.2d). 

Lemma 2. For the class 2 functions; 

1 2 . -  i 03 0 5 
- ~ iJS j (O)=O--~.+~.  . . . . .  sin0 (2.3a) 
t j = 1,3,5 .... " 

when j is odd and 
2n 0 2 0 4 0 6 

1 + ~ iJY~j(O) = 1 - ~ + 4~- -- 6--! + . . . .  cos 0 (2.3b) 
j = 2,4,6 . . . . .  

when j is even. 

This follows from Lemma 1 because the sum of  the coefficients of 
Ok/k! will be unity by virtue of (2.2d) and its daughters, since (2.2b) 
associates a daughter with just those powers of # appearing in (2.2c), 
(2.2f), for each k. 

Similarly, in case 1, 

Sj(0) = sin 0 (2.4a) 
j =  1,2 .... 

1 + ~ Ej(0) = c o s 0  (2.4b) 
j = 1,2...  

So putting # = 1 in (2.1b) and # = i in (2.2b), we recover the basic circular 
relation 

e ~~ = cos 0 + i sin 0 (2.5) 

which demonstrates the required rotational properties. As will be seen in 
the next section, we will only be interested in the functions Sj (0) of class 2 
and Y.i(0) of class 1 [the remainder may be obtained by integration and 
(2.3), (2.4)] and we can now state the main contribution of this paper. 

Theorem. The rotational functions of class 1 are 

Y.j(O) = byo + bjl cos 0 + bjz cos 2zO + " "  + bj, cos 2,0 (2.6) 

where j = 1, 2 . . . . .  n. In case 2 they are 

P-  ~Sj(O) = ajl sin 0 + ai2 sin 220 +"  "- + aj, sin 2,0 (2.7) 

where j is odd, and 2 2 , . . . ,  2, are positive. 
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Proof. We will begin by proving (2.7). By (2.2b) 

d e~O{ 
dO 0 = 0  

=~, 2fix~(o)o=o+~, ~c,(o) ~ o+.. .+~, 2fiy~.(o) 
= 0 = 0  

' l  3"1 I + ~.~ " ~  S I (0) + [l -.~ S 3 (0) + ' . .  S2n - I (0) ~ ~.~ 
0 = 0  0 ~ 0  0 ~ 0  

(a) 

and only the dS~(O)/dO term survives, so we find from (2.7) that 

all+ ~ 2ya U= l 
j=2,3 .... (b) 

a31+ ~ 2ya3i . . . . .  a2~_,.1+ ~ ~. ja2.- , j=O 
j=2,3 .... j=2,3 .... 

Also (2.3a) says that if (2.7) is a solution, then 
2/I-- 1 

t l l  "= X ajl = 1 
j = 1,~,~ .... ( c )  

( 2n~l ) ( 2n~l ) ( 2n~1 ) 
A 2 =  ay2 ----- A 3  = aj3 . . . . .  A,, = aj .  = 0  

j = 1,3,5 .... j = 1,3 ..... y = 1,3 .... 

and the proof reduces to confirming the relations (b), (c) by comparing the 
series expansion of (2.7) with the P-1Sj(0) of (2.2b). We easily confirm 
that (b) follows from the fact that the coefficient of 0 is unity in S, (0) and 
zero in $3(0) . . . .  $2,_ i(0) [see (3.17)]. In general the coefficient of Ok/kl in 
i j - I  Sj (0) is 

ajl + ~, 2ik aji (d) 
i = 2,3... 

and adding 

At + ~ ,L'11, = 1 (e) 
i= 2,3 .... 

which is satisfied by (c), since the 2 i are arbitrary and nonzero, this 
completes the first half of the proof. 

To prove (2.6), we note that in the case of the cosine expansion all 
the terms in d(ei~'~ vanish, so we do not need (b), while (2.4b) 
implies that 
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i~ 1,2,... j=  1,2,... 

j = 1,2 .... j = 1,2 .... j = 1,2 .... 

which we can confirm by expanding (2.6) and comparing with Zi(0) of 
(2.1b). The coefficient of unity is (f), while the coefficient of Ok/k! yields 

j=  2,3 .... 

which is satisfied by (g) [see (3.8)]. This completes the proof. 

In ease 2, (2.2e) and (2.20 show that the even and odd powers 
02"+1/(2n + 1)! and OZ"/2n! will have the same coefficient Cz,_l, which 
means that Y.j(0) of (2.2b) is also a cosine series that can be found from 
(2.7) by integration. 

The single-value representations of SO(3) have infinitesimal operators 
that can be written in the form (1.13) (de Wet, 1987) and it will be 
instructive to show how the theorem holds for this simple case. If we take 
j = 2 as an example, then the characteristic equation 

0 =# (#2+  1)(#2+4) ~ #5= _ _ 5 # 3 - 4 #  

leads to 

Then 

and 

05 07 09 ) 
e~'~ = # O - - 4 f [  + 20~[ -- 84~.~ +-  �9 �9 

( 0 3 0 5 0 7 0 9  ) 
+ # 3  ~ .  _ 5 T., + 21 ~ .  _ 85~ . ,  + . . .  

(o2 o~ os o '~ ) 
+#2 ~. _4~_~.t + 20_~_ 8 4 ~ .  + . . .  

04 06 0 s 01o ) 
+#' ~ . - 5 ~ + 2 1 ~ . , - 8 5 ~ . +  �9 

= 1 + #$1 (0) + #3S3(0 ) + #2~-'~2(0 ) -~- # + ~4(0) 

1 y,  ijSj (0) = $1 (0) - $3 (0) = sin 0 
i j =  1,3 

1 + y~ i%(o) = 1 - z 2 ( 0 )  + z , ( 0 )  = cos  0 
j=  2,4 



Now let 

S l ( O )  ----- all sin 0 + a12 sin 20 
03 05 

= (all + 2a12)0 -- (all + 8a12) ~. + (all + 32a~2) ~.  

= 0 _ 4  05 
5! 

which has the solution 

Similarly, if 

de Wet 

and 

4 1 
all= , a l 2 =  .3 

- $ 3 ( 0  ) = a31 sin 0 + a32 sin 20; 
1 1 

a31 3 ' a32 6 

4 1 1 . 1 
Sl (O) = ~ sin 0 -- g sin 20, $3 (O) = ~ sm O - ~ sin 20 (2.8) 

it is easily verified that I~Sl(O)+/z3S3(O) agrees with the alternative ele- 
ments of a representation D~!m(~/2, O, 70 of SO(3) and we have succeeded 
in finding a series solution in terms of arguments of the eigenvalues. In this 
case it is possible to express this solution in terms of a single angle 0, but 
this is not in general true for SO(p + q), where more than one angle may 
be needed to define the relative position of two p planes (Wong, 1967). The 
remaining elements of  D(m2.)m0r/2, O, 70 are given by the "cosine" expansion 

1 + ~2Y~(0) + #4~:4(0) 

where 

5 4 1 1 1 1 
~2(0) = ~ - - ~ c o s  0 + ~ c o s  20, Z4(0) = ~ - ~ c o s  0 + ~ c o s  20 

Finally, because the arguments depend on the eigenvalues, the theorem 
is independent of the set of canonical eigenvalues chosen as long as one 
value is unity or i, and p0 remains constant. Thus, if/~ ~ / n  (i.e., 2 ~2/n), 
then 0 --, nO, which will not change the angular dependence of the geodesics 
since we can simply replace nO by q~ and use the new parameter ~p. 

3. THE NEUTRON-RICH ELEMENTS LITHIUM-8,9 

In this section we will begin by finding the CP-invariant operators CEA ] 
determined by (1,12), then calculate their eigenvalues by using a matrix 
representation or directly by means of (1.4) and the canonical labeling. We 



Representations of SO(p + q), O(p) 1851 

will then be in a position to find the wave functions from (2.1b), (2.6) in 
the case of SLi or (2.2b), (2.7) in the case of 9Li. According to a theorem 
by Kobayashi and Nomizu (1969), this enables us to plot the geodesics on 
the nuclear manifolds of 8'9Li and if we assume that these geodesics are the 
paths of mesons holding the nucleus together by exchange forces, then it is 
possible to find the configuration of protons and neutrons and conse- 
quently the nuclear shapes without making any assumption whatsoever 
about the actual constitution of a nucleon. In accord with experiment 
(Blank et al., 1991), a nuclear halo is found for SLi (see Fig. 1). 

We can replace (1.12) by 

7 A1 rL" A2~ A3 "/"A4 ~'~ ~21 ~'~2"" a3 Ta4 (3.1) 
C[A] = ~  L'0 I~0 ~ 0  - - / _ ,  ~ u 0 ' ~ 0  "tO 

2 

where 

0"0 ~-" 20"(2 A) --~" [ E l 3  "~ " �9 " "-~ E A 3) ,  N0 ~ 2tr~ A) = ( e l 4  + " "  W EA4)  

To = ") = + - . .  + e '5) 
(3.2a) 

1/ t _S'" i, 

| 

-'1 

/ 
/ /  

Y 

Fig. 1. Geodesics on the manifold of 8Li. 
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which are related to the real quantum numbers s, p, and/ '3 = ~(Z - N) of 
spin, parity, and charge by 

a o = 2is, no = 2ip, T o = 2 iT  3 (3.2b) 

and show how the quantum numbers of individual nucleons are additive. 
The summation contains all those terms arising from repeated indices 

EJ23EJ23, EJ23E~4, EJ23EJos,... that yield a single term according to the 
multiplication table 

Ultimately (3.1) 

g~3  E~4 E J5 

E~3 i 2 iEYo5 iEJ4 
E~4 iEJo5 i 2 iE{3 

eJ05 ig~4 iEJ23 i 2 

will be expressed in the 

(3.3) 

because for each nucleus, To is just a diagonal matrix equal to i ( Z  - N) .  
An elementary application of (3.1) is 

ao To = p(Ei23EYos) + irro (3.4a) 

where P donates summation over the A I / ( A -  n)! permutations of the 
bracketted generators. Then 

C[( A _ 2)lOl]/i(A- 2) = P(Ei23EJos) = ao To - ilro (3.4b) 

In the case of SLi let us now 'add' another nucleon by multiplying 
(3.4a) by tro = (E~3 +" "" + E283) to obtain 

= P(E23E23Eos) + 2iP(E~3E~4) + 8i2To (3.5a) 

and continue the process until 

2 3__ i ~ k 1 m �9 i ~] k / + 6zP(E23 EI4E05 E05) + a o To -- P(E23 E23 Eo5 Eo5 Eos) i2{22P(Ei~3 EY23 E~5) 

+ 6P(E~4E~aEgs) + 8P(E~osEYosEgs)} + 44i3p(E~3E~4) + 176i4To 

(3.5b) 

Now each term in (3.5b) must be expressed in powers of ao, no, To by using 
relationships similar to (3.4b) and we can write 

i 3 
i ~] k I m 2 2 

7g 0 - -  17 0 C[32o3] = ~ P ( E 2 3  E.23 Eo5 Eo5 E o 5 )  = ( 3 . 6 a )  

after substituting for To = i ( Z -  N ) = - 2 t  In the case of the mirror 
nucleus SB, To = 2i and 

q3023] = q32031 = no 2 _ ao 2 (3.6b) 

bilinear form A(ao, fro) 
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Thus we have found CP symmetry because Ta--' -T3  is accompanied 
by no-- ,-no.  In general the fundamental states [A] need not be ground 
states but must be invariant under the interchange A~ A2 ~ A3A4 if T3 = 0. 
In the case of the mirror nuclei, Al = A4,  because otherwise CtA ~ will not be 
CP-symmetric under the interchange A~A2A3A4~--, AaA3A2AI. This con- 
siderably restricts the number of isotopes; for example, CP invariance is 
broken in the case of the unbound nucleus l~ The number of distinct 
permutations in (3.6a) is less by the factor 1/A2!A3!A4! than the combina- 
tions of (1.12) because terms such a s  E~4E{4 = E~4E~4 must not be counted 
twice. 

Table I is an evaluation of (3.6a), (3.6b) for the coherent states of 
SLi, SB, where we have assumed that (22 + 23) is the number of states with 
a negative spin and (22 + 24) the number with a positive parity. 

Thus it is possible to find the eigenvalues of Ci^ l without any matrix 
representation, although we shall need a representation of # in order to use 
(2.1b). The state labeling is confirmed by the fact that the eigenvalues are 
the same in both cases. The first and fourth columns [21222324] and 
[24232221] have been used to find go and zco. If the second and third 
columns had been used, the spins and parities would have changed sign, 
but CtA 1 is invariant under changes in sign of % and no. 

A matrix representation for go and 7to is provided by (1.11), which we 
shall write 

so that 

~ro = E5 | + 75| E3, 7~ 0 ~--- E5 (~'~3 --  ~5 (~ E3 

C[32o3] = - 4~5 (~ ~3, C[3o23] -~ - 4~3 (~ ~5 (3.7) 

Here 

(jm + 112y, ~m) = + [ ( j -  m)(j + m + 1)] 1/2 

(jm - 112?k Jim) = - [(j + m)(j - m + 1)]1/2, k = 3, 5 

is a Lie operator of SO(3) and the matrix representations of Cc32o31 and 
CE3o231 are identical up to a rearrangement of rows and columns. They are 
reducible and we must choose that submatrix A with an eigenvalue 12 
which from Table I corresponds to [A]. The complete set is 
{60; 1 2 ; 1 2 ; - 4 ; - 2 0 ; - 3 6 } ,  or adding 2 t = 3 6  and dividing by 16, 
{0; 1; 2; 3; 3; 6}. Then the characteristic equation 

A 9 
/~(# - 1 ) ~  - 2)(/~ - 3 ) ~  - 6) = 0,  /~ = - ~  + ~ E6 
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leads to the real part 

( 0 6  08 0 '~ ) 
e ;F'~ = 1 +/~ 432 ~ .  - 24192 ~.,. + 970704 10--'-~ . . . .  

/ 02 06 0 s 01o \ 
+ p 2 { - ~ ,  r k  - 828 ~ + 44892 ~ - 1785420 ~.v + ' "  "// 

�9 " 6 " 8 ' 
2/492 0---' t -25032  O + 979524 01~  .~ " 

+ / ~  6. 8. ~ :/ 

..[__ ~/4( 04 06 0 8 010 ) 
~.  - 97 ~-. + 4333 ~-. - 164809 ~-~. + �9 �9 �9 (3.8) 

which must be used to find the coefficients b,.j of  (2.6) by comparison with 
an expansion of  the cosine functions up to 08/8!. We find 

18 9 2 1 
Zt = - 2  + - f f cos  0 - ~ cos 20 + ~ cos 30 - ~--6 cos 60 (3.9a) 

47 18 27 10 11 
Y-2 = 3---6 - -ff cos 0 + --~ cos 20 - -~- cos 30 + ~ cos 60 (3.9b) 

1 11 5 1 1 
Z3 = - ~  + T~ cos 0 - ~ cos 20 + ~ cos 30 - ~-6 cos 60 (3.9c) 

1 1 1 1 l 
Y~4 = ~-~- ~-~ cos 0 + ~ cos 20 - ~ cos 30 + 3 ~  cos 60 (3.9d) 

and can confirm (2.4b) directly as well as the fact that (3.9) also yields the 
correct coefficients for 01~ These functions are not yet harmonics 
because we still have to multiply by the powers of/~ obtained from the 
symmetric matrix 

[1403] [1421] [3203] [3221] [5003] [5021] [2~222324] CtA ] 
=[h] 

0 0 0 - ` / 2 4  0 `/15 [41301 -36Y 
0 0 - ` / 2 4  2`/8 `/15 - 2 ` / 5  [4112] 12 

A = 16/* - 36//5 0 --`/24 0 3`/3 0 0 [2330] 12X 
= - 4  x - ` / 2 4  2x/8 3`/3 - 6  0 0 [2312] - 4  

0 , /15 0 0 0 0 [0530] 60 
,/15 - 2 , / 5  0 0 0 0 [0512] -20  

(3.10) 

In this particular case the state labeling is not disturbed by (3.7) so it 
is easy to find the subspace with the labels shown, but this is not generally 
the case when the fundamental state [A] has to be found by inspection once 
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A has been symmetrized by the interchange of rows and columns. If  the 
orthogonal state Y is chosen adjacent to X from the [A] = [3203] column, 
then using 

e i(a/16)~ = ei#~ -i(9/4)~ (3.11) 

we obtain that the X, Y harmonics of A are finally 

[2330] = 1 (9.875 - 15 cos 0 + 17.0625 cos 20 + 2.5 cos X =  3O 

+ 1.5625 cos 60) cos ~ 0 (3.12a) 

Y = [4130] = - ~  (2.375 - 4.725 cos 0 + 3.375 cos 20 - 1.375 cos 30 

+ 0.350 cos 60) cos ~ 0 (3.12b) 

The factor of 1/16 on the left hand side of (3.11) will not change the 
shape of the geodesics plotted in Fig. 1 which clearly show a meson path 
to a "halo" nucleon 3. Only one cycle of 3 x 360 ~ is shown. During the 
next cycle the nucleons rotate through 180 ~ and there is complete circular 
motion of the whole configuration. In this case there are no oscillations of 
the orbits, but in the case of 7Li the factor e ~x,~ causes a vibration. Also the 
fact that x/8 is double-valued means that another set of geodesics in the 
X Y  plane can be obtained by reflection. 

Turning now to 9Li and 9C, we find CP-invariant operators, respec- 
tively, 

C[33o3] = (1/6)(tr~ + 7r 3) + (3/2)(a0~ + tr2n0) + (17/3)(a o + rt0) (3.13a) 

Ct3o33j = (1/6)(a 3 - n3o) + (3/2)(tro n2 - a~no) + (17/3)(ao - no) (3.13b) 

The subspace of the matrix representation containing [3303] is 

2 
M = ~ x  

i i 

0 ' A '  
I I 

-AI 01 
I I 

(3.14) 

where (1/24)A is a symmetric matrix with the eigenvalues 

{ - 5 ;  -3 .5 ;  -2 .5 ;  - 2 ;  - 1 ;  -0 .5 ;  2.5; 10} 

To these we add 5 and divide by 3, to get the canonical set 

{0; 1/2; 5/6; 1;4/3; 3/2; 5/2; 5} (3.15) 
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with a characteristic equation leading to eU~ ~ 3  ~,3,.,. I~Sj(O) where 

M U = ~ + a  = 

I 5 
cos ~ 0 

e#O ___ 
5 

-- sin ~ 0 

and 

A 5 
72 ~E8 

sin ~ 0 

cos 3 0 

As I E ~5+~ o 
; o'= 5 

o -~Es 

(3.16) 

| 

s,=(o 2'25~176176176176 ) 
- 144 z 15! )-"" 

(03 17,205,62501' ) 
$3= ~ 1442 15! + ' ' "  

0(~.) 43'718'650 01s ) 
$5 = 1442 15! +" " " 

(0750,135,3610 .5 ) 
5'7 = -~. 1442 15.) + " "  

(0927,999,760015 ) 
S9= ~ 1442 15! ~ '"" 

(011 7,378,528 015 / 
Sll = \]~. 1442 15.) F ' ' "  

/ 

= (013 771,840 0Is 
S~3 \]~) 1442 15! ~-"" : 

(3.17) 

Then because 

E~ .' I: 
, 0 I - C  3 

I ~ =  , ; = , ; 
I ! 
! ! 

[ :] #5 0 , .4 5 
= -c  ~'!' o " ' "  c - ~ + g N  

Because of all the zeros, the determination of the coefficient aij of (2.7) 
is particularly simple for the odd nuclei and consists of inverting the matrix 

B = 2] ~.~ I ... ~] (3.18) 

2~"-' 2~"-' 1 ... /~n 2n-1 
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the coefficients of sin O, sin 2 2 0 , . . . ,  sin 2,0 in e ~'~ are simply 

B-1 

c 
r 

c2n- 1 

(3.19) 

where c is that element )(4 in the middle of  the center column of A (labeled 
by [A]) or an adjacent state Xs, and e 3 is chosen from C s, etc. 

Finally, from (3.16) the harmonics of e r176176 are 

( . 0 ~ 3 .  1 4 3 
= s i n ~ 0 + 3 s i n  0 64)(4 + 9 sin -~ + 5 sin 0 + ~ sm 0 + ~ 

5 + ) + 15 sin 0 22.5 sin 50 s i n 3 0  (3.20a) 

( . 0 ~ 3 .  1 4 3 
64)(5= 9 s l n ~ + 5 s i n  0 - ~ s m 0 - ~ s i n ~ 0 + 3 s i n ~ 0  

+ 15 sin ~ 0 - sin 50 sin ~ 0 (3.20b) 

We find that )(5(0) = -X4(1080 ~  O) is the complement of  X4(O) and 
if we label all eight elements of the center column in numerical order 
beginning with )(1, then we obtain 
relationships 

Xs(O) = - X l ( l O 8 0  ~ - 0), 

)(6(0) = - ) (3 (  1080 ~ - 0) 

the remaining anticomplementary 

x~(o) = -X2(lO8O ~ - o) 

where only the signs of  the third, fourth, and seventh terms differ in each 
pair! Moreover, it is easily verified that dXi/dOIo=o, i = 1 . . . . .  8, are in fact 
the elements of  the relevant column of #. 

Returning to (3.20), we can use multiple angle formulas to express 
sin 50 in terms of  sin 0, {sin -50"2 , sin 30} in terms of  sin(0/2), and sin(80/6) 
in terms of  sin 5 gO, so that there are actually three different sets of  translated 
angular momentum, of  which only the second has been measured. In the 
absence of any stronger indication we shall take X4 and X5 as the 
eigenfunctions of  the eigenvahes �89 and 3 and these eigenfunctions are 
plotted in Fig. 2. There is a shell structure in accord with the measurements 
of Blank et al. (1991), but it is remarkable that mesons pass from the inner 
shell to the outer one and if the same pattern is followed for l~Li, two extra 
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Fig. 2. Geodesics on the manifold of ~LJ. 
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nucleons could be loosely bound to the j = �89 core and account for the 
nucleon halo. Unfortunately CP symmetry is broken for this case, so that 
direct calculation is not possible, but because X5 = - X 4 (  1080 ~ - 0) there is 
another picture symmetric about X4 = - X s .  
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